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Abstract
The effect of boundary conditions on the vacuum structure of quantum field
theories is analysed from a quantum information viewpoint. In particular, we
analyse the role of boundary conditions on boundary entropy and entanglement
entropy. The analysis of boundary effects on massless free field theories points
out the relevance of boundary conditions as a new rich source of information
about the vacuum structure. In all cases the entropy does not increase along
the flow from the ultraviolet to the infrared.

PACS numbers: 11.10.Hi, 11.10.Wx, 11.25.Hf

1. Introduction

In quantum field theory the vacuum state encodes all physical properties of the theory. Indeed,
any other state can be generated by the action of field operators on the vacuum. In particular,
the effects generated by non-trivial topological structures of space or change of boundary
conditions can be directly analysed from the changes induced on the vacuum structure. Among
the most famous vacuum effects are the phenomenon of spontaneous symmetry breaking and
the Casimir effect [1].

In particle physics, the main interest usually focuses on the behaviour of Green’s and other
quantum field correlation functions at short distances which provides information about high
energy particle scattering processes. These observables are very insensitive to space topology
or field boundary conditions [2]. However, for strongly correlated or confining theories long
distance properties become very important, for instance, to point out the existence or not of
confinement or mass gap. The existence of deconfining transitions in those theories (e.g.
non-Abelian gauge theories) can be directly extracted from the analysis of the structure of the
vacuum state. Another rich source of information about the theory is encoded in the behaviour
of non-local observables such as free energy or entropy that can be defined by exploiting
analogies with thermodynamics.
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The interest on observables of this type has been recently boosted by the development
of quantum information theory. The entanglement entropy [3] provides a good measure of
the vacuum entanglement structure. It can also be used to point out the existence of phase
transitions since it is unbounded for critical systems and bounded for systems with a finite
mass gap [4]. It has been also pointed out that the confinement mechanism might be related
to vacuum entanglement [5]. Another thermodynamic observable, the boundary entropy
[6, 7] is related to the number of boundary states. Both new types of entropy do not scale
with the volume of the space, unlike the standard bulk entropy and other extensive quantities.
The entanglement entropy scales in the critical case with the area of the boundary where the
fluctuating modes of the vacuum are traced out [3, 8]. This behaviour is characteristic of black
hole physics and is one of the key features of the AdS/CFT correspondence.

By their own nature it is quite possible that both new entropies shall depend on the global
properties of the configuration space. In this note we analyse the dependence of those quantities
on the space topology and field boundary conditions as well as its physical implications for
quantum field theories.

2. Boundary conditions and conformal invariance

Let us consider a real scalar free field theory defined in a bounded domain � in R
D with

regular and smooth boundary ∂�. The quantum dynamics is governed by the Hamiltonian

H = −1

2

∥∥∥∥ δ

δφ

∥∥∥∥
2

+
1

2

(
φ,

√
−� + m2φ

)
. (1)

Unitarity requires that H has to be self-adjoint. In particular, this implies that one must fix
the boundary conditions of the fields φ in a way that the Laplace–Beltrami operator −� is
self-adjoint and positive. The boundary conditions which define a self-adjoint operator −�

are given by [9]

ϕ − iϕ̇ = U (ϕ + iϕ̇) (2)

in terms of an unitary operator U ∈ U(L2(∂�, C)) which acts on the boundary values ϕ

of the quantum fields φ and their normal derivatives ∂nϕ = ϕ̇. Notice that not all unitary
operators give rise to positive Laplace–Beltrami operators, but to have a consistent quantum
field theory for all values of m one needs to consider only boundary conditions which satisfy
both requirements. The set of boundary conditions which are compatible with unitarity is
given by unitary matrices U with eigenvalues λ = eiα in the upper unit semi-circumference
0 � α � π . For a single real scalar field defined on the two-dimensional spacetime R× [0, L]
the set of compatible boundary conditions is a four-dimensional manifold which can be covered
by two charts parametrized by

L

(
ϕ̇(0)

ϕ̇(L)

)
= A

(
ϕ(0)

ϕ(L)

)
, (3)

where A = −i(I − U)/(I + U) is any Hermitian matrix with A � 0, and(
ϕ(L)

Lϕ̇(L)

)
= B

(
ϕ(0)

Lϕ̇(0)

)
, (4)

where B = (
a b

c d

)
is any real matrix with ad + bc = −1, ac � 0 and bd � 0.

In the massless case m = 0 the theory is conformally invariant. However, most of the
compatible boundary conditions (3) and (4) break conformal invariance [6]. Only the boundary
conditions corresponding to unitary matrices U with eigenvalues ±1 preserve conformal
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invariance [10, 11]. In the two-dimensional case the set of conformally invariant boundary
conditions {

I,−I, Uα =
(

cos α sin α

sin α −cos α

)
;α ∈ (0, 2π ]

}
⊂ U(2), (5)

is given by Neumann (U = I), Dirichlet (U = −I) and quasiperiodic (Uα) boundary
conditions [10]. All other compatible boundary conditions break conformal invariance and
are not invariant under renormalization group transformations. They describe renormalized
trajectories of the renormalization group flowing towards one of the conformally invariant
boundary conditions [11].

3. Boundary effects in conformal field theories

The infrared properties of quantum field theory are very sensitive to quantum field boundary
conditions [2]. In particular, the physical properties of the quantum vacuum, free energy and
vacuum energy exhibit a very strong dependence on the type of boundary conditions.

The vacuum state of the free field theory is gaussian


(φ) = N e− 1
2 (φ,

√−�+m2φ) (6)

and the vacuum energy density E0 = tr
√−� + m2 is ultraviolet divergent. However, for finite

cylindric domains of the form SD−1 × [0, L] the finite size corrections εc of the asymptotic
expansion of the vacuum energy density for large values of cylinder base radius � and
generatrix L with � � L � 1

E0 = εB + εb

1

L
+

1

LD+1
εc(mL) + O

(
1

�

)
(7)

are not divergent [1]. In the massless limit m → 0 the coefficient εc of this term becomes
universal (i.e. independent of L) but is highly dependent on the boundary conditions1.
For instance, in two dimensions for quasiperiodic boundary conditions this first finite size
correction is

εc = π

12
− π

[
α

2π
− 3

4

]2

. (8)

The values and signs of this finite size contribution to the energy are very different for
periodic (α = π/2, εc = −π/6), antiperiodic (α = 3π/2, εc = π/12) and Zaremba (α = π,

εc = π/48) boundary conditions [13–18]. In higher dimensions we have for domains of the
form S1 × [0, L] the values of εc: −ζ(3)/(2π)) for periodic, 3ζ(3)/(8π) for antiperiodic and
3ζ(3)/(64π) for Zaremba boundary conditions, where ζ(3) = 1.202 0569 is Apéry’s constant
[19]. Similarly, in three-dimensional cylindric domains S2 × [0, L] we have for the same
boundary conditions −π2/90, 7π2/720 and 7π2/11520, respectively [19].

In a similar manner the free energy of the system at finite temperature 1/T with the
boundary conditions (2) has the following asymptotic expansion for large volumes and low
temperature 0 � L � T � � [7, 20],

f = − log Z

�D−1L
= fBT + fb

T

L
+

T

LD+1
fc(mL) + O

(
1

T
,

1

�

)
, (9)

where fB = εB, fb = εb and fc = εc. This is in agreement with the asymptotic expansion
of vacuum energy density (7) and for the same reason does not present any logarithmic
dependence in the smaller transverse size scale L.

1 The absence of logarithmic correctionsO(log L) is due to the topology of the boundary. In general those corrections
spoil the universal character of the O(1) term [12].
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In the asymptotic regime of low temperature and large volumes 0 � T � L � � we
have

f = − log Z

�D−1L
= fBT +

1

T D
f̃ c(mT ) + O

(
1

L
,

1

�

)
. (10)

There is a similar expansion for the entropy

S = (1 − T ∂T ) log Z = −(D + 1)
�D−1L

T D
f̃ c(mT ) +

m�D−1L

T D−1
f̃ ′

c(mT ) + sb + O
(

1

L
,

1

�

)
.

The third term of this expansion sb, known as boundary entropy [6, 7], is finite and depends
on the boundary conditions of the fields. In two-dimensional conformal theories this entropy
sb = log g can be formally associated with the number of boundary states g [6], but in many
cases g = elog sb is not integer and does not correspond to a simple counting of boundary states
[7]. It has been conjectured that the quantities g and s evolve with the renormalization group
flow in a non-increasing way [7]

sUV � sIR, gUV � gIR

as it corresponds to any type of thermodynamic entropy [7, 22]. This conjecture is known
as g-theorem and has been verified in many cases [22, 23] although not yet proved for the
boundary renormalization group flow.

The conjecture can be verified in the case of a two-dimensional free real scalar field
defined on R × [0, L]. The partition function for antiperiodic boundary conditions, once
properly renormalized, can be exactly calculated and it is given by

Za = q
1

24

∞∏
n=1

(
1 − qn− 1

2
)−2 = 1

2
q̃− 1

12

∞∏
n=1

(1 − q̃2n−1)2, (11)

where q = e−2πT/L and q̃ = e−2πL/T . From (11) it follows that Casimir coefficient is in this
case εc = π

12 . For Zaremba boundary conditions [24] we have

Zz = q
1

96

∞∏
n=1

(
1 − q

n
2 − 1

4
)−1 = 1√

2
q̃− 1

12

∞∏
n=1

(1 − q̃4n−2), (12)

which leads to the Casimir coefficient εc = π
48 .

For periodic boundary conditions there are zero modes which generate infrared
divergences. The partition function (density) is given by [25]

zp =
√

L
2πT

q− 1
12

∞∏
n=1

(1 − qn)−2 =
√

T
2πL

q̃− 1
12

∞∏
n=1

(1 − q̃n)−2. (13)

But, the infrared problem is so severe that affects the consistency of the theory [26]. In any
quantum field theory the Schwinger functions must satisfy the Osterwalder–Schrader reflection
positivity property in order to preserve unitarity and causality. However, in a free theory of
two-dimensional massless bosons the two point function is neither positive nor reflection
positive [27]. One way of solving all these problems is to consider a compactification of the
scalar field � = eiφ/R to a circle of unit radius. In this case, the correlators of the compactified
field � satisfy the reflection positivity requirement and theory becomes consistent [27].

In this case, the partition function acquires some additional contributions due to the
compactification of zero modes. In particular, these contributions give rise to the following
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partition function:

ZR
p = q− 1

12

∞∏
n=1

(1 − qn)−2
∞∑

n,m=−∞
q

πR2n2+ m2

4πR2 (14)

= q̃− 1
12

∞∏
n=1

(1 − q̃n)−2
∞∑

n,m=−∞
q̃

πR2n2+ m2

4πR2 (15)

for periodic boundary conditions.
However, for the rest of quasiperiodic boundary conditions (α 	= π/2) there is no

contribution of the compactification of zero modes and the partition function is directly given
by

ZR
a = q

1
24 − 1

2 (ε− 1
2 )2

∞∏
n=−∞

(1 − q |n−ε|)−1 (16)

= q̃− 1
12 (2 sin πε)−1

∞∏
n=1

|1 − e2πεiq̃n|−2, (17)

where ε = ∣∣ α
2π

− 1
4

∣∣. In particular, this means that for antiperiodic and Zaremba boundary
conditions there is no modification of (11) and (12), respectively.

For Neumann boundary conditions the partition function is also modified by the presence
of compact zero modes

ZR
N = q− 1

48

∞∏
n=1

(1 − qn/2)−1
∞∑

n=1

q
n2

4πR2 (18)

= √
πRq̃− 1

12

∞∏
n=1

(1 − q̃2n)−1
∞∑

n=1

q̃πR2n2
(19)

in a similar way that for the theory with Dirichlet boundary conditions, where

ZR
D = q− 1

48

∞∏
n=1

(1 − qn/2)−1
∞∑

m=−∞
qπR2m2

(20)

= 1
2R

√
π
q̃− 1

12

∞∏
n=1

(1 − q̃2n)−1
∞∑

m=−∞
q̃

m2

4πR2 . (21)

The boundary entropy can easily be computed for all those cases and the results are

sα
b = − log (2 sin πε) gα = (2 sin πε)−1 quasiperiodic b.c.

sD
b = − log 2R

√
π gD = (2R

√
π)−1 Dirichlet b.c.

sZ
b = − 1

2 log 2 gZ = 2− 1
2 Zaremba b.c.

sN
b = log R

√
π gN = R

√
π Neumann b.c.

(22)

The singularity observed for quasiperiodic boundary conditions at ε = 0 is due to the
existence of zero modes which once properly incorporated into the compact theory give rise
to the correct value for periodic boundary conditions (14) and (15) with vanishing boundary
entropy. Note also that gZ = √

gDgN as corresponds to the factorization property of counting
boundary states.
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The g-theorem holds along the renormalized flow of Robin boundary conditions

U =
(

eiβ0 0
0 eiβL

)
,

which interpolate between Dirichlet (U = −I) and Neumann (U = I) boundary conditions
through Zaremba (U = σ3) boundary conditions [28]

gD > gZ > gN

provided that R < 1/
√

2π . The boundary entropy exhibits a monotone behaviour similar to
that of the central charge or the bulk entropy.

4. Entanglement entropy

There is another type of entropy associated with the vacuum state of a field theory. If we
ignore some field degrees of freedom of the theory one can consider the effective physical
(mixed) states by tracing out those degrees of freedom. In this way mixed states with
finite entropies can effectively appear in quantum field theory at zero temperature from pure
states. The mechanism of tracing out degrees of freedom is a kind of quantum version of the
renormalization group. In particular, the vacuum state generates by this mechanism a family
of mixed states whose entropies provide measures of its degree of entanglement. These mixed
states are generated by integration of the fluctuating modes of the vacuum state 
0 in bounded
domains �1 of the physical space R

D [3], i.e.

ρ�1 =
∫

�1


∗
0 
0(x) dDx. (23)

The entropy of this state S�1 = −Tr ρ�1 log ρ�1 (vacuum entanglement entropy) is ultraviolet
divergent, but once regularized exhibit a very interesting asymptotic behaviour which is similar
to that of the boundary entropy analysed in the previous section [8, 22, 29–31]. For massless
scalar theories the entropy presents the following asymptotic behaviour:

S�1 =
D−1∑
i=0

Ci

(
L1

a

)i

+ O
(

a

L1

)
, (24)

in terms of the diameter L1 of �1 and the ultraviolet short distances cut-off a introduced to
split apart the domain �1 and its complement R

D\�1. In the three-dimensional case, this
asymptotic behaviour follows an area law similar to the black hole area law [3, 8]. In general,
for D > 1 the coefficients Ci are not universal because they are regularization dependent.
However, for one-dimensional spaces, although the formula (24) suggests that C0 could be
universal, it does not happen. In fact, the asymptotic behaviour of the entanglement entropy
is not given in that case by (24) because that entropy acquires a leading logarithmic correction

S�1 = C log
L1

a
+ C0, (25)

which obviously implies that the constant term is highly dependent on the regularization
method. However, it turns out that the value of the coefficient of this logarithmic term C is
universal and equal to 1/3 of the central charge c of the conformal invariant theory. In the
case of a massless scalar boson c = 1 and C = 1/3 [32]. The question is whether this value is
dependent or not on the boundary conditions of the fields when the theory is defined on a large
bounded domain � ⊃ �1. It is remarkable that coefficient c1 = 1/3 turns out to be independent
of the choice of boundary condition in � = (0, L) when �1 = (L/2 − l/2, L/2 + l/2) is
chosen to have half of the size of the interval. This result can be easily understood as a

6
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consequence of the fact that the entanglement entropy is basically due to the behaviour of field
correlations at the interface between �1 and its complement �\�1 which does not involve the
boundary values of the fields. On the other hand the finite part C0 is highly dependent on the
ultraviolet regularization method.

However, when �1 reaches the boundary of the whole space � the entropy has the same
asymptotic behaviour [33, 36]

Sl = C

2
log

l

ε
+ log g +

1

2
C0, (26)

but with a different coefficient for the asymptotic logarithmic term and a different finite
term which is related to the boundary entropy [7] and, thus also dependent on the boundary
condition. The behaviour of this quantity along the boundary renormalization group flow has
then the same monotone behaviour as the boundary entropy.

A similar phenomenon occurs in 2+1 dimensions with the constant term. In general, the
entropy is given by

S�1 = C1
L1

a
+ C log

L1

a
+ C0. (27)

The logarithmic term is absent for domains � and �1 with smooth boundaries ∂� and ∂�1,
whenever �\�1 is a connected manifold [37]. In a regularized theory the smoothness condition
requires that the curvature of the boundaries must be always much larger than the ultraviolet
cut-off a [38]. In that case, the remaining constant C0 has a special behaviour because not only
is regularization independent but also independent of the size of �1. C0 can be split into two
terms C0 = C ′

0 + C∗
0 , one C ′

0 which contains all possible dependences on the prescription used
for the definition of the �1 perimeter L1, and another one C∗

0 which is absolutely prescription
independent. In a massive theory, if L1 is much larger than the inverse of the mass gap 1/m,
there is a prescription which uniquely fixes the ambiguities involved in such a splitting
[39, 40]. If �1 is decomposed as the disjoint union of three similar domains �1 =
�α ∪ �β ∪ �γ , one can define

C∗
0 = C

�1
0 − C

�α∪�β

0 − C
�β∪�γ

0 − C
�α∪�γ

0 + C
�α

0 + C
�β

0 + C
�γ

0 , (28)

and the result is independent of the �1 decomposition and the perimeter definition prescription.
The constant C∗

0 is also shape independent and only really depends on the topology of the
domain �\�1. It defines a topological invariant entropy Stop = C∗

0 associated with the
quantum vacuum [39, 40], which measures its degree of topological entanglement. It can
be shown that Stop = − logD, where D is the total quantum dimension of the underlying
topological theory. In our case it is easy to show that D = 1, which means the vanishing of the
topological entanglement entropy, and that result is independent of the boundary conditions. In
more general theories like the SU(2) WZWN theory with level k the topological entanglement
entropy is given by [39]

Stop = log

[√
2

k + 2
sin

π

k + 2

]
. (29)

The quantum dimension D is non-integer in that case but it is a real topological invariant.

5. Conclusions

The novel thermodynamic quantities associated with field theories such as boundary entropy
and vacuum entanglement entropy reveal new interesting properties of vacuum structure. The
boundary entropy is associated with the existence of boundary states and, thus, is very sensitive
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to the boundary conditions of the fields. The role of the vacuum entanglement entropy focuses
on the measure of the amount of entanglement of the quantum vacuum and is absolutely
independent of the type of boundary condition, whenever the domain where the quantum
fluctuations of the fields are integrated out does not reach the boundary of the space. However,
when this domain reaches the boundary, the entanglement entropy becomes dependent on the
boundary conditions, displaying a monotone behaviour along the boundary renormalization
group flow similar to that of the boundary entropy.

We have explicitly verified the behaviour of boundary and entanglement entropies under
changes of boundary conditions for low dimensional massless free field theories. The boundary
entropy varies for quasiperiodic boundary conditions and Robin boundary conditions, whereas
the entanglement entropy only changes when the entanglement domain reaches the boundary
or changes its topology. The same behaviour appears in three-dimensional field theories where
the finite term of the asymptotic behaviour of the entanglement entropy can be related to a
new topological invariant (topological entanglement entropy). For free scalar field theories
we have shown that this topological invariant is trivial for connected convex domains, but
self-interacting field theories and non-connected domains might have non-trivial topological
entanglement entropy, which provides a basis for robust codes in quantum computation [39].

In all analysed cases the boundary entropy does not increase along the boundary
renormalization group flow from the ultraviolet to the infrared [7, 28]. There are two interesting
problems which remain open: the effect of interactions on both types of entropies associated
with the quantum vacuum and their behaviour for topological field theories. Both problems
deserve further analysis.
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[21] Cardy J 2006 Encyclopedia of Mathematical Physics ed J-P Françcoise, G L Naber and T S Tsun (New York:
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